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THE JOURNAL OF PHILOSOPHY 
VOLUME LXXV, NO. 12,  DECEMBER 1978 

DIRECT INFERENCE AND INVERSE INFERENCE * 
HERE is no surer test of the character of an inductive 
logic than problems of inverse inference : inference from Tddsample" to "population." Bayesian programs, like Car- 

nap's, need no special principles (either substantive or methodo- 
logical) for solving inverse inference.' After an initial (prior) proba- 
bility is fixed for some hypothesis (and bayesian programs differ 
on whether the logic stipulates this prior), then confirmational condi- 
tionalization determines the subsequent (posterior) probability for 
that hypothesis, assuming new evidence is accepted. Moreover, 
this machinery works whether the hypothesis is general, as  in in- 
verse inference, or particular, as  in predictive inference. 

In opposition to bayesian theory, frequentists usually object to 
the principle of confirmational conditionalization not because its 
formal basis (Bayes' theorem) is less than valid, but because the 
presupposition of a precise, prior credal probability for a hypothesis 
(given an arbitrary knowledge base) is thought to be indefen~ible.~ 

* I wish to thank Henry Kyburg for his unbounded patience with me so that 
I might better understand his position. He has helped me correct several mis- 
understandings I had about epistemological probability. Isaac Levi has read 
earlier drafts of this paper and has suggested important revisions, which I have 
acted on. Also, I thank Carl Posy for his assistance in clarifying some obscure 
passages. 

1 Throughout this paper I will call an inductive logic bayesian when (i) an 
agent's beliefs, a t  a time, are represented by a single coherent probability function, 
(ii) an agent's confirmational commitments, a t  a time, to changes in belief that 
follow a growth in knowledge are governed by Bayes' theorem (this is called 
confirmational conditionalization), and (iii) total evidence is respected. 

I call an inductive logic frequentist when it  seeks to by-pass confirmational 
conditionalization in inverse inference and, instead, relies upon (what Ian Hack- 
ing calls) a "frequency principle." That is, as described in the text, frequentists 
solve inverse inference by reduction to direct inference, and problems of direct 
inference (the "single case") are solved with a frequency principle. 

The name 'frequentist' is not to suggest a frequency interpretation of proba- 
bility. I t  is a separate question whether or not some nonconfirmational probability 

0022:362~/78/75 12/0709$02.20 0 1978 The Journal of Philosophy, Inc. 
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Especially in problems of inverse inference, where the hypothesis is 
general and the initial knowledge base is often weak, frequentists 
typically reject the bayesian assumption that there exists a precise 
prior probability for the hypothesis. Hence, frequentists are wont to 
deny a bayesian solution to inverse inference because confirmational 
conditionalization assumes too much. 

Whereas there is discord between the two schools on matters of 
inverse inference, there is relative harmony about simple cases of 
direct inference : inference from population to sample. For example, 
given merely the information that an urn contains equal numbers of 
red and black chips and that a chip is to be drawn by some suitable 
(random) process, there is unanimity that the probability is .5 
that the chip to be drawn is black. This agreement is significant 
because, if one characteristic of a frequentist is opposition to 
bayesian conditionalization in inverse inference, a second is support 
for the constructive strategy of solving inverse inference problems 
by reducing them to cases of direct i n fe ren~e .~  

In this paper I attempt a refutation of frequentism by arguing 
that the program for reducing inverse to direct inference is not 
viable. Moreover, I claim my arguments also show that varieties of 
bayesian theory which try to resuscitate Laplacean Insufficient 
Reason (so that precise "ignorance" prior probability might be 
identified) fail in the same way the frequentist idea does.4 In section I 
I consider Henry Kyburg's original frequentist theory, efiistemo-
logical probability, and argue against its solution to inverse infer- 
ence. (I am forced to treat his position separately because of the 
unusual stand that Kyburg takes in rejecting conditionalization.) In 
section 11 I consider Ian Hacking's novel reconstruction of Fisher's 
fiducial probability and argue that the inconsistencies present are 
representative of the generic weakness in the frequentist solution to 
inverse inference. I limit the discussion to problems of statistical 
inference, i.e., where populations and samples are of interest for 
their statistical properties only. Besides having practical signif- 
icance, problems of statistical inference highlight the philosophical 
issues a t  stake here. 

is even recognized by a frequentist. For example, both Hacking's fiducial infer- 
ence and Kyburg's epistemological probability are frequentist positions; yet 
Hacking acknowledges chances but Kyburg rejects any such notion. 

For example, advocates of Neyman's confidence intervals, or Fisher's fiducial 
probability, or Fraser's structural inference, or Kyburg's epistemological proba- 
bility, all subscribe to this policy. In this paper I will not address confidence- 
interval theory. I believe adequate criticism of this program is already common 
in the literature. 
' I have in mind particularly Sir Harold Jeffreys' inductive logic, especially his 

theory of insariants. A recent defense of Jeffreys' position is found in Roger 
Rosenkrantz, Inference, Method and Decision (Boston: Reidel, 1977). 
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I 

Within the last year readers of this JOURNAL have witnessed aspects 
of an ongoing debate between Isaac Levi and Henry Kyburg over 
fundamental issues in statistical inference. In "Direct Inferen~e ,"~  
Levi reports to us an incompatibility he uncovers between Kyburg's 
original theory, epistemological probability, and a conjunction of 
familiar inductive principles :principles all of which Levi finds com- 
pelling. (Levi attacks with a counterexample focused a t  Kyburg's 
analysis of direct inference; hence his title.) Kyburg, who has de- 
veloped epistemological probability over a twenty-year span, is not 
caught napping. In his recent book, T h e  Logical Foundations of 
Statistical Inference, he devotes a chapter (chapter 11) to an evalua- 
tion of one of the inductive principles essential to Levi's counter 
argument, namely, confirmational conditionalization. On the basis 
of several numerical examples worked out in epistemological proba- 
bility theory, Kyburg concludes that coilditionalization is worse 
than suspect. 

In "Randomness and the Right Reference Class,""<yburg re-
iterates his rejection of conditionalization while challenging Levi to 
defend his own version of direct inference, a version obeying the 
controversial principle. Kyburg charges that,  whereas all violations 
of conditionalization imposed by epistemological probability are 
either banal or otherwise intuitively satisfying (Levi's counter-
example being of the first kind), it is Levi's position that is in- 
adequate despite its adherence to conditionalization. Specifically, 
Kyburg sees Levi's program as overburdened with a bevy of un-
warranted empirical assumptions, all needed to ensure conditional- 
ization in even the simplest cases of direct inference. Thus, a 
central theme in their debate is the clash of arguments for and 
against the principle of conditionalization. 

I t  is not my intent in this article to critically re~riew Kyburg's 
evaluation of Levi's approach to direct inference.' I do, however, 
strongly disagree with Kyburg on his assessment of the status of 
epistemological probability theory. Specifically, I find serious 
difficulties in the epistemological-probability solution to inverse- 
inference problems. Kyburg's theory is unusual in part in that all 
probability statements have the direct form. Since, as we expect of a 
frequentist inductive logic, epistemological probability solves in- 
verse inference by reduction to direct inference, it: is only natural to 
wonder whether the violation of conditionalization (identified by 
Levi) affects inverse inference too. In what follows in this section I 

6 This JOURNAL, LXXIV, 1 (January 1977):5-29. 

"his JOURNAL, LxXIV, 9 (September 1977): 501-521. 

7 See Levi's rebuttal, this JOURNAL, this issue, 730-737. 
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shall demonstrate that the sufficiency principle (a logical con-
sequence of conditionalization) is violated, with the result that many 
basic inverse-inference problems are left unsolved. Also, once we 
understand the severity of Kyburg's rejection of conditionalization, 
we can identify three garden-variety statistical inferences (each 
related to inverse inference) that cannot be reproduced in epistemo- 
logical probability theory. 

My concern with Kyburg's theory grows from a respect for and 
an appreciation of what we can learn from him about the limits of 
the frequentist program. Where epistemological theory encounters 
difficulties in inverse inference there is good reason to worry whether 
other frequentist approaches commit subtle, but serious errors in 
their haste to solve these problems. (We shall return to answer this 
question in section 11.) 

T o  understand better the controversy surrounding conditionaliza- 
tion, let us review the role played by this principle within a familiar 
logic of induction, to wit :a Carnapian framework. One of the secure 
principles in the Kyburg/Levi debate, i.e., one accepted with only 
minor revisions, is coherence. In a Carnapian system, coherence 
postulates the existence of a single probability function QK( ), 
defined over sentences or propositions, which represents an agent's 
degree of belief; where K (a consistent, deductively closed set of 
sentences) corresponds to his corpus of knowledge. Now, conditional- 
ization fixes the commitments (the agent bears), arising from the 
epistemic state represented by QK( ), to other epistemic states that  
result merely by enlarging K through acceptance of new evidence. 
That  is, conditionalization identifies QK( /d) as the extension of 
the credal state QK( ), when K is augmented by datum d (and all its 
consequences). The multiplication axiom then yields the important 
result that,  if Q K ( ~ )  # 0 and h is an hypothesis, 

QK (h/d) = QK (d/h) .QK (h) + QK(d) (Bayes' theorem) 

Calling K' the new corpus of knowledge that follows upon accepting 
evidence d [and assuming, as always, that Q K ( ~ )  # 01, we have the 
familiar bayesian formulation of conditionalization : 

Conditionalization: QKJ (h) = QK (d/h) .QK (h) + QK (d) 

Returning to Kyburg's theory, we see that reformulation of these 
principles is no simple matter. Epistemological probability, unlike 
the Carnapian alternative, is not a real-valued but an interzlal-
valued function. EPg(h) = [PI,,pn]. The epistemological proba- 
bility of h, given knowledge base K,8 is the interval [ p ~ ,Pn], 

8 The knowledge base K need not be deductively dosed, or even strictly con- 
sistent, in epistemological theory. However, for the arguments considered here 
nothing rests on this fact. 
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0 6 p~ < pu 5 1. Thus, Kyburg accommodates the usual fre-
quentist objection to conditionalization by generalizing the repre-
sentation of a rational belief state to include intervals of probability. 
His plausible idea is that, in cases where the knowledge base is 
empirically too impoverished to support precise probability values, 
intervals of probabilities are adequate. 

The analogue to coherence in Kyburg's theory is his result that, for 
any finite set of sentences, there is some coherent probability func- 
tion QK( ) that agrees with all the epistemological probability 
intervals E P K (  ) over the set.Y That  is, there is a t  least one QK(  ) 
whose values fall within the corresponding intervals E P K (  ) for 
sentences in the set. But the difficulty in reformulating conditional-
izat ion is that the very simple t ry:  

E P K ~  = EPK(d /h ).EPK(h)+ EPK(d)( h )  

will not work, since the product and division of intervals is not 
meaningful. 

In "On Indeterminate Probabilities,"l0 Levi develops an inductive 
logic that both uses (convex) sets of coherent probability functions 
to represent degrees of belief and satisfies a natural extension of 
conditionalization. However, Levi's important criticism of epistemo- 
logical theory (in "Direct Inference") does not  presume this general- 
ization of conditionalization ; for, quite cleverly, Levi chooses a 
counterexample in which all epistemological probabilities are pre- 
cise, point-valued ([p, p]), even with changes in evidence. Were 
Kyburg's objections to conditionalization limited to the familiar 
frequentist plea: that conditionalization is to be restricted to prob- 
lems where well-defined, i.e., precise, probability exists, then he 
would be obligated to satisfy conditionalization in Levi's example. 
Il'hat we learn from Levi's argument is that Kyburg's reservations 
on conditionalization are more estensive than is usual for a 
frequentist.ll 

See MT-12.1 of his Logical Fozindutions of Statistical Inference (Boston: 
Reidel, 1974). 

loThis JOURNAL, LXXI, 13 (July 18, 1974) : 391-418. Although Levi's prograin 
utilizes both confirmational conditionalization and a frequency principle, i t  is 
not bayesian (as that  title is used here) since beliefs are not represented by a 
unique probability function, nor is it frequentist since Levi does not t ry  to  solve 
inverse inference by reduction to  direct inference. Hence, his position is an  
interesting alternative to  those discussed in the text. 

l1 I summarize Levi's counterexatnple as follows: There exists a corpus of 
knowledge K such that,  for a hypothesis /L, EP9(lt) - [.9, .9] = .9. Also, with 
three possible evidential reports d, ( i  = 1, 2, 3) (dl or d l  or d3) B K I  EPrc,(h)- 35 ,  EPK2(R)= .91, and EPK,(lt) = .95; where R,is the result of accepting 
d ,  into K. Finally, it is the case that  EPKlorP(h)= EPK,,,,(~)= .9; where Kt ,,1 
is the result of accepting into K the weaker evidence d, or d,. But an  elementary 
calculation shows that  no coherent probability function can satisfy these sis 
equations if conditionalization holds, even though all probabilities are precise. 
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As I reported a t  the beginning of this section, Kyburg reacts to 
Levi's charge by claiming that whenever conditionalization fails in 
epistemological theory i t  is either because the failure is banal- 
i.e., What do we lose in Levi's example?12-or else the failure is 
satisfactory, as when we ignore conditionalization because, true to 
frequentism, our knowledge cannot be accurately represented by a 
precise, coherent probability function-i.e., conditionalization does 
not apply. I maintain that  Kyburg is wrong and that we can clearly 
recognize the severity of the loss of conditionalization in terms of 
the collapse of his program for inverse inference. 

Let me begin, then, with a brief rehearsal of Kyburg's ingenious 
scheme for reducing inverse to direct inference. Epistemological 
probability statements all have a direct-probability form : the E P K  
is [pL, fin] that entity a bears property F, since a is known to be 
an R and i t  is known only that between 9~ and pu  of all Rs 
are Fs. Most of the important philosophical issues in inductive 
inference are treated through Kyburg's regulations governing 
randomness. Randomness conditions fix the reference class R and 
frequencies PL, PU of the epistemological probability statement. 
That  is, EPK(Fu) = [PL,PO], because randomness conditions yield 
the claim: a is a random member of the (reference) set of Rs, with 
respect to property F,and by appeal to the known frequency bounds 
[ p ~ ,  pu] for Fs among Rs. Thus, epistemological randomness 
solves the vexing problem of direct inference: how to choose the 
reference set. The trade-off that must be evaluated pits size of the 
reference set (the narrower the better) against width of the fre- 
quency bounds (the narrower the better), for with decreasing 
reference-set size comes (usually) a broadening of the frequency 
interval. For example, in the extreme case of a unit reference set 
{ a ) ,  the frequency of Fs may be known to be bounded only by the 
trivial interval [0, 11. 

The trick in converting inverse to direct inference rests on the use 
of a special property, called rational rep~esentativeness. For instance, 
suppose the inverse inference is from an observed sample of n 
flips with a newly bent coin to hypotheses about the bias of the coin. 
We assume, initially, no nontrivial frequency information about the 
bias of the coin, but we agree that the flips are (1) statistically 
independent, and (2) modeled by a binomiaI distribution with the 
binomial parameter 9 equal to the bias for landing heads up. Then 

1%In "Subjective Probability: Criticisms, Reflections, and Problems," Journal 
of Philosophical Logic,VII, 2 (April 1978): 157-180, Kyburg argues against using 
betting arguments to show the penalties to be imposed on violators of coherence 
and conditionalization, 
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a sample of n flips is rationally representative at the .1 lei 1 (RR.1) 
just in case the difference between the observed frequency of heads 
and the bias for heads is not more than .l. If the coin is flipped 100 
times and 67 trials land heads up, the sample is RR.1 if and only if 
18 - .67 1 5 .l. If the coin is "fair" (8 = . 5 )  then the sample is not 
RR.1. 

Although the R R  property is not observable (since we are ignor- 
an t  about the bias of the coin), i t  is very useful for inference about 
the bias, since (using a normal distribution approximation for the 
binomial frequencies) between 95% and 100% of all samples of 100- 
fold independent trials from a binomial process are RR.1. Further- 
more, because we are relatively ignorant about the bias of this coin, 
upon learning that  67 of the 100 flips landed heads up, randomness 
conditions yield the claim that  our observed sample is a random 
member of the (reference) set of all such 100-fold trials, with 
respect to the RR.1 property and subject to the known frequency 
bounds C.95, 11. Hence, EP=(RR.l  (our sample)) = C.95, 11. In 
words, the epistemological probability equals the interval C.95, I] 
that 1 B - .67 1 5 . I ,  or, equivalently, the epistemological probability 
is no less than .95 that  .57 5 8 5 .77. This last statement is a non- 
trivial solution to the inverse-inference problem, obtained by reduc- 
tion to direct inference through the R R  predicate.13 

Obviously, the critical steps in this argument involve the random- 
ness conditions; in particular, why is i t  that  ours is a random sample 
with respect to the R R  property and frequencies bounded by .95 
and 1.0? The answer lies in the character of the randomness regula- 
tions which support claims of irrelevance unless relevance can be 
demonstrated. For example, if we concede that  the next flip of a 
fair coin is random with respect to landing heads up and (precise) 
frequency .5, then unless we know enough about flips of fair coins 
that stay in the air for more than two seconds to defeat the random- 
ness claim just made, the next flip will be a random member of the 
set of flips with fair coins that  stay up for more than two seconds, 
with respect to landing heads up and (precise) frequency .5.  That  is, 
Kyburg's randomness conditions treat evidence as irrelevant unless 
relevance is demonstrable. 

Before observing the sample of 100 flips, a simple direct inference 
leads to the conclusion that  i t  is random with respect to RR.1 and 
frequencies bounded by .95 and 1.0. After observing the flips and 
noting that 67 fell heads up, unless this extra information can be 

laThis argument was first presented in Kyburg, Probability and tlte Logic of 
Rational Belief (Middletown: Wesleyan UP, 1961). 
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shown relevant to the initial randomness claim (which cannot 
happen if we are ignorant about 8), the sample is labeled random 
as in the argument above.14 I t  is this attitude toward relevance that 
permits Levi's counterexample. But, as we see next, this treatment 
of relevance also leads to a rejection of the sufficiency principle (a 
consequence of conditionalization) with dire consequences for 
Kyburg's solution to inverse inference. 

A question of both practical and theoretical importance for 
problems of inverse inference is how to recognize summaries of 
large bodies of data that preserve all the relevant information 
contained in the evidence as a whole. A powerful and widely 
accepted answer is given by the sufficiency principle.15 

DeJinition: With respect t o  inverse inference about  a n  unknown 8, a 
simplification (condensation) of da ta  d t o  t, a function of d alone, i.e., 
f (d) = t ,  is s u f i c i e n t  just in  case: 

where HOis a hypothesis (of inverse inference) about  8. T h a t  is, t is 
sufficient for d whenever the  conditional probability of d, given t, is 
independent of the unknown 8. 

S u f l c i e n c y  principle:  If and only if t is sufficient for d, with respect to  8, 
then inference from t (alone) preserves all the  relevant evidence con-
tained in d concerning e. 

For instance, in the problem discussed above, the epistemological- 
probability solution to inverse inference about the bias of a newly 
bent coin depends on knowing the frequency of flips landing heads up 
and the total number of trials. Kyburg's reduction to direct inference 
using RR rests upon the irrelevance (subject to randomness) of 
other aspects of the total evidence, such as the order of trials land- 
ing heads up among those landing tails up, the outcome of the first 
trial, the proportion of heads to tails among the odd-numbered flips, 
etc. Now i t  is not difficult to show that,  for the binomial distribu- 
tion with statistically independent trials, a sufficient set of statistics 
for sample data (with respect to inference about the binomial 
parameter) is the pair: number of trials and frequency of outcome.16 
Thus, Kyburg's ingenious use of the property of being rationally 

14 I thank Professor Levi for suggesting this distinction to me and for pointing 
out its significance in separating Kyburg's from Hacking's solutions to inverse 
inference. 

16 See Appendix 1 for a derivation of the sufficiency principle from condi- 
tionalization. 

16 This and other purely statistical claims made in the text can be referred to 
any basic statistics book, e.g., D. V. Lindley, Introduction to Probability and 
Statistics from a Bayesian Viewpoint (New York: Cambridge, 1965). 
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representative does not violate the total-evidence requirement (for 
this problem), if we assume sufficiency. 

Nonetheless, we should have doubts about the viability of 
Kyburg's program for using the RR predicate to solve inverse 
inference through direct inference because representatioeness is 
always limited to a few aspects of the total evidence and we have 
no guarantee that  these aspects form a sufficient summary of all 
the data. Of course, if conditionalization were valid epistemo-
logically, then sufficiency would be, too, and our doubts would be 
assuaged. But this answer is of no consequence for Kyburg, since 
he is adamant in his denial of conditionalization (as Levi's analysis 
clearly shows). What  we discover, from the example sketched below, 
is that sufficiency fails in epistemological theory, with the upshot 
that  inverse inference fails because the randomness conditions do 
not pick out the suficient aspects of the evidence for characterizing 
representativeness. 

Imagine a problenl where we are to determine the volume V of a 
hollow cube about which we are currently "ignorant." In epistemo- 
logical terms, given our present knowledge, only trivial [E,  1 - E] 

probability intervals attach to hypotheses about V. For instance, 
E p ~ ( 6< V < 12) = [E, 1- 61.'' We have a t  our disposal a simple 
experimental procedure for collecting evidence. A liquid of known 
density, say 1 unit weight/unit volume, can be poured into the cube 
to fill it exactly, and then we can weigh the quantity of liquid on a 
scale. We assume considerable knowledge about this scale ; namely, 
that i t  is unbiased with an error component that  is closely approxi- 
mated by a normal distribution with known variance u2. That  is, 
on separate (independent) weighings of an object with true weight 
W, observed weights w,are distributed in accord with the familiar 
normal curve with mean (center) a t  JY and variance (spread) u2. 

A single measurement w provides a datum for inverse inference 
about FV. In  epistemological theory a solution to this inference 
problem exists by reduction to a direct inference about the rational 
representativeness of the observed weight. Call an observation w 
rationally representative a t  the qth level just in case w does not 
differ from W by more than q standard deviations (=qa), i.e., so 
long as 1 W - w 1 < qr. From several interesting properties of the 
normal distribution (see Appendix 2), ~x-e know the exact frequency 
of RR samples, a t  any level. The randomness rules convert this 
information into a claim that,  before measurement, the observed 

I suppress the units, for simplicity. In all cases the magnitude of the measure- 
ment is a11 that matters. 
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weight will be a random member of the set of weighings with respect 
to representativeness (and known frequency). As in the examples 
discussed above, after w is observed (since the new evidence is not 
demonstrably relevant) the randomness claim remains valid, and 
direct inference about the representativeness of the sample results 
in a solution to the inverse-inference problem. Moreover, since 
W = V (the liquid has unit weight/volume), the inverse inference 
about W is equivalent to inverse inference about V. 

Instead of a single weighing of the liquid, we may take (sta- 
tistically independent) repeated measurements, leading to the data 
{ w I ,  Wa, . .., w,}, n large and odd. For such a data set there are 
alternative summaries, e.g., a condensation of information to the 
sample average a = x i  wi + n, or to the sample median w, [=that 
reading for which (n- 1) + 2 observations are smaller, and the same 
number larger, than it]. With respect to each of these summaries 
we can define a rationally representative property. But the fre- 
quency of representative samples with respect to these aspects of 
the data conflict. The sample cannot be ra?zdorn with respect to both 
kinds of representativeness. (See Appendix 2.) 

I t  is not uncommon, in direct inference, for there to be a surfeit 
of frequency information. The frequency of Fs among Rs can differ 
from the frequency of Fs among R*s. If it is known that entity a is 
both an R and an R*, then we must look to the randomness regula- 
tions for a proper reference class (and frequency bounds). If we are 
suitably ignorant of the frequency of Fs among the (narrower) class 
of R-and-R*s, then each candidate for randomness may be defeated 
by the rival (because of the incompatible frequencies), with the 
upshot that only a trivial [E,  1- E ]  epistemological probability is 
valid for the hypothesis that a is F. 

This is the circumstance we find ourselves in with the n-fold 
sample of weighings. Having seen a and w,, we are forced to reject 
each claim that the sample is representative (with respect to the 
corresponding aspect) because information about the other aspect 
of the sample defeats the contention of randomness. Thus, there is 
no epistemological solution to the inverse-inference problem in this 
case, since no direct inference about representativeness is available. 
Only trivial [ E ,  1 - E] probability intervals attach to hypotheses 
about V after the data are observed. But these probability values 
were valid before any experimentation. So the new evidence is 
irrelevant to the inverse inference, since there is no change in 
probabilities. 

What is unsatisfactory about this result is that, in this problem 
(and not w,) is sufficient for the data, with respect to W. That  is, 
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all the relevant features of the e~~idence  (about V) are sulllmarized 
in a, if suficiency is accepted. Then, assuming sufficiency, inference 
about V should not be defeated by learning w,,,if is already 
known. Just as, for the binomial problem, information about the 
first flip does not defeat the randomness claim about the sample's 
representativeness, so too information about the median value of 
the sample should not defeat the randomness claim about the repre- 
se~itativeness of the sample with respect to its average. But 
episternological probability theory does not recognize this fact and 
sufficiency is violated. [See Appendix 2 for details.] 

In addition to the losses to inverse inference that follow from the 
failure of sufficiency, epistemological probability suffers additional 
defects because of the very general rejection of conditionaiization. 
To the best of my knowledge no other violation of the conditional- 
ization principle is the result of a failure of some inductive principle 
that is entailed by conditionalization. Instead, I can categorize the 
losses only by listing the sorts of problems that are left unsolved. 
In each case, epistemological theory is peculiar because precise 
probabilities are licensed which can serve as initial probabilities in 
Bayes' theorem, yet conditionalization is not satisfied.ls 

Setting aside the dificulties with sufficiency, the first of three 
kinds of problems that  go unanswered in Kyburg's theory is ex- 
emplified by the historically important Behrens-Fisher problem. 
I<yburgJs objection to conditionaiization in this problem repeats 
Neyman's grounds for rejecting Fisher's s o l ~ i t i o n . ~ ~  To put matters 
as simply and generally as I can, the inverse problem about unknown 
rp  is intractable because the attempted reduction to direct inference 
is blocked by ignorance of some other nuisance factor r. However, 
inverse inference about j- is possible (by reduction to direct in- 
ference). In summation, we have a precise epistemological proba- 
bility defined for hypotheses Hi-,given data d :  denoted QK(H{,/~). 
Also, precise episternological probability exists for hypotheses >I+, 

18 I use this opportunity to correct an  error I made in my review of Kyburg's 
recent book [see this JOURNAL, LXXIV, 1 (January 1977), 47-62]. On page 60 of 
my review I mistakenly charged Kyburg's theory with a violation of order in-
verialtce (see sec. 11 below). In fact his system will satisfy order invariance by 
resorting to  broad probability intervals when all the evidence is known. Also, I 
take this opportunity to  explain that  Kyburg's "co~npromise" between bayesianl 
nonbayesian methods agrees with the former only R hen the prior epistemological 
probability is directly supported by known frequencies, and not when the  
episternological probability is obtained by using randomness conditions to suppress 
evidence (as irrelevant) just because it cannot be shown to be relevant. 

USee Jerzy Keyman, "Fiducial Argument and the Theory of Confidence 
Intervals," Bionzetrika, XXXII (1941): 128-1%. 
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given d and knowledge of { :denoted QK(H4/d& Hr).Conditional-
ization solves the problem, since (assuming conditionalization) :20 

Even though each of the epistemological probabilities needed to 
solve the right-hand side of this equation is precisely defined, 
conditionalization does not hold, and this equation is epistemo- 
logically invalid.21 Thus, Kyburg's system does not generally permit 
the statistically important technique of "integrating out" nuisance 
parameters, even when there is a well-defined probability for the 
nuisance factor. 

The second of the three varieties of inverse inference which 
suffer under epistemological theory can be described under the 
heading, "combining data of two kinds." Here, data from one kind 
of experiment support inverse inference about some unknown 6 ;  
that is, epistemologically, a precise inverse solution exists: 
Q K ( H + / ~ ) .A second experimental report, d', is also available, but 
d and d' represent different kinds of information which cannot be 
combined into a single report for one inverse inference about 6. (It  
does not matter here whether d' supports an inverse inference by 
itself.) For example, suppose d is the reported sample average @ of 
one set of weighings, and suppose d' is the reported sample median 
wmof a diferent set of weighings (all weighings of the same liquid). 
Suppressing the problem discussed earlier, let us grant a precise 
epistemological solution to the inference problem, from data d to 
hypotheses about 6: denoted Q K ( H + / ~ ) .  Also, a simple direct 
inference about possible values of d', given knowledge of 6, exists: 
denoted QK(~ ' /H+) .  Moreover, the assumption that d and d' are 
statistically independent yields the equality: 

If conditionalization were epistemologically valid, these precise 
epistemological probabilities would be sufficient to determine pre- 

80 Except for the change to  continuous distributions, this is Fisher's method of 
solution for the Behrens-Fisher problem, with 6 the difference in population 
means, and 5- (the nuisance factor) the population variance ratio. Other examples 
of  this "step-by-step" method are found in R. A. Fisher, Statistical Methods and 
Scienti$c Inference, 3rd ed. (New York:  Hafner, 1973). Fisher's commitment t o  
conditionalization is demonstrated in his later works, e.g., "Some examples of  
Bayes' method of  the experimental determination o f  probabilities a priori," 
Journal of the Royal Statistical Society, B, 24 (1962):11S-124. 

21 Kyburg's solution to  the bayesian/nonbayesian compromise does not apply 
here, since the epistemological probabilities are not directly supported by  fre-
quency distributions. See f n  18. 
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cise probabilities for hypotheses about 4, given all the data, d 6" d'. 
That  is, assuming conditionalization : 

Once again conditionalization fails, and the only solutions to inverse 
questions (once all the evidence is known) are trivial [E, 1- €1 
intervakZ2 

The last of the triad of statistical problems that are left unsolved 
can be described as a composite of the other two. Here we are 
given one experimental report, say d, and, in the absence of knowl- 
edge of +, we must hypothesize about the other experiment d'. 
That  is, to use Carnap's account, we are faced with a problem of 
"singular predictive inference" with data of two kinds. Assuming 
conditionalization : 

Once again, each of the credal probabilities in the right-hand side 
of this equality is epistemologically well defined and given a precise 
value. But the equation is invalid in Icyburg's theory and the in- 
verse problem is left with only trivial [E,  1- € ]  answerseZ3 

Let us tally up the scorecard on epistemological probability. 
Icyburg claims that  conditionalization is not a sound inductive 
principle, and defends this view by developing a theory that does 
not obey the suspect axiom. I contend that Icyburg's defense is 
inadequate because his theory survives without conditionalization 
only by failing to resolve basic problems of inverse inference. The 
catalogue of unsolved problems has the peculiarities that :  (i) 
sufficiency (hence, conditionalization) is invalid; and (ii) each of 
three other kinds of inference is invalid: inverse inference with 
nuisance factors, inverse inference with data of different kinds, and 
singular predictive inference with data of different kinds. What is 
common to these diverse failures is that,  were conditionalization 
valid, they would not exist. 

I conclude that  Icyburg has not given us a satisfactory fre- 
quentist position because the violations of conditionalization (and 
sufficiency) are anything but banal. 

I1 

Kyburg's position represents an extreme frequentism, due to the 
extensive rejection of conditionalization. We find a more moderate 

22 Evidence of Fisher's use of conditionalization to solve this kind of problem 
is found in chapter 5 of his last book. See fn 20. 

23 Again, see chapter 5 of Fisher's last book for nurnerica1 exampIes. 
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frequentism in Ian Hacking's elegant reconstruction of Fisher's 
fiducial probability. Hacking offers us a program that solves in- 
verse inference by reduction to direct inference, a program that 
denies the existence of precise prior probabilities in inverse inference, 
yet a program that (unlike Kyburg's) recognizes conditionalization 
once the appropriate probabilities are defined.24 Hence, we can 
appreciate Hacking's concern for logical consistency (and complete- 
ness) of his reconstruction, as evaluated against the family of 
alternative (coherent) bayesian inferences. That  is, loosely put, 
Hacking's frequentism takes the existence of a coherent bayesian 
model as a condition of adequacy for inferences licensed by his 
reconstruction of fiducial inference (150/1). 

In contrast with Icyburg's theory, Hacking considers a reduction 
of inverse to direct inference which is limited to problems admitting 
a precise (point-valued) probability solution. The trick in his 
approach is to identify a privileged (hypothetical) random variable, 
called the pivotal variable, which is the object of a simple direct 
inference before the data are observed, and then by appeal to a 
special irrelevance principle to retain this direct inference after 
learning the experimental outcomes, thereby inducing a solution to 
the inverse-inference problem. 

We may rehearse Hacking's argument with the example of the 
hollow cube. Remember that we are investigating the volume V 
of a hollow cube. Our experiment consists in filling the cube with a 
liquid of known density, one unit weight/unit volume, and then 
weighing the volume of liquid on a scale whose readings w are 
normally distributed with mean W (the weight of the liquid) and 
known variance a2. The random quantity (W - w) is a pivotal 
variable whose distribution is known precisely, to wit: a normal 
distribution with mean 0 and variance u2. Thus, before the liquid 
is weighed (w unobserved) there is a simple direct inference to 
hypotheses about the next value of the pivotal variable, the value 
i t  will have after w is fixed. For example, there is a credal probability 
of about .67 that -a 5 (W - w) 5 u. After the measurement we 
know the magnitude w (the observed weight), and this direct 
inference about the pivotal variable is no longer valid unless the 
extra information is irrelevant to hypotheses about (W - w). 

Hacking presents a novel "principle of irrelevance" which pro- 
vides a formal criterion for assessing irrelevance claims regarding 
pivotal variables (149/50). Whereas Kyburg's position grants 

Ian Hacking, Logic of Statistical Inference (New York:Cambridge, 1965), 
especially chapter 9. 
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irrelevance unless relevance is demonstrated, the effect of Hacking's 
irrelevance principle is to deny irrelevance unless it is demonstrated. 
In the example above, the additional information w passes the test 
for irrelevance and the direct inference survives intact. Suppose we 
observe ru = 15, then the direct inference about the pivotal variable 
becomes a credal probability of about .67 that  - u 2 (W - 15) 5 u, 
or equivalently, that  15 - u < W 5 15 + a. This last statement is 
a solution to inverse inference about W. Hence, by appeal to an 
irrelevance principle, inverse inference about the volume of the 
cube is reduced to direct inference about the pivotal variable. 

During the past half-century, since Fisher first introduced 
fiducial inference through pivotal variables, the statistical literature 
has been replete with paradoxes showing fiducial probability to be 
incoherent. A common theme in these cou~lterexamples is the con- 
struction of alternative pivotal variables from the same data and 
parameter (s) for inverse inference, such that the fiducial probability 
obtained through one pivotal variable is inconsistent with that  
obtained through a different pivotal variable. For instance, in the 
example discussed on page 717 (repeated weighings of the liquid), 
both random quantities ( W  - ZD) and (W - w,,,) are pivotal vari- 
ables, yet the solutions to inverse inference about IV that  follow 
from these are inconsistent. (Remember that  there is a coriflict 
between the frequencies for rational represe~ltativeness of the two 
sample aspects, page 718.) 

I t  is a tribute to I-Iacking's reconstruction that  his principle of 
irrelevance solves many of these "paradoxes" by eli~ninating all but 
one family of pivotals for any given problen~, and that family 
yields a common, coherent solution to the inverse-inference problem. 
Moreover, Hacking claims, the solution obeys confirmational condi- 
tionalizatioil as well (154/5). For example, only the pivotal using 
the szbficient statistic is legitimated by the irrelevance principle, 
which is what we would expect since sz~#ciency is a consequence of 
conditio~~alization.Finally, if Hacking is correct about the validity 
of conditionalization in his theory, then each of the three varieties 
of statistical problems considered unsolvable in Kyburg's episterno- 
logical-probability theory is given a precise, coherent answer. In 
the discussion that follows, I will show tliat Hacking's program is 
unsatisfactory because an important inductive principle, ovder 
i n v a ~ i a n c e  (a consequence of conditionalization), fails. Hence, 
Hacking's reconstructed fiducial argument violates conditionaliza- 
tion. Lastly, I will argue that  no correction exists for this deficiency 
short of reverting to Kyburg's account where only trivial [E, 1 - E ]  

probabilities are valid. 
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The inductive principle I choose to investigate next postulates 
that no effect can result from the order of acceptance of evidence. 
Subject to conditionalization, the degree of belief in a hypothesis h, 
upon learning the compound evidence dl & 7.2, does not depend either 
upon the sequence in which the data are accepted or upon whether 
the data are accepted in one fell swoop. Hence, 

Order invariance: QKlae.,(h)  = QKl,(h)  = QK,,(h)  

where Kij is the corpus of knowledge that  results from corpus K 
by first accepting datum di and then enlarging this new body of 
knowledge by accepting datum di; and where Kidj is the corpus of 
knowledge that follows from accepting the conjunction d i  6.di into 
K. [See Appendix 3 for the derivation of order invariance from 
conditionalization.] 

What is the significance of this rule for problems of statistical 
inference? Suppose we flip the newly bent coin nl times and, on the 
basis of this evidence, assess alternative hypotheses about the 
magnitude of the bias. Next, if the experiment is continued so that 
another n2 flips are made, shall the evaluation of the competing 
hypotheses be changed by the order in which we consider the two 
sets of outcomes? Moreover, shall our evaluations change once again 
when we lump together the two sets of trials into one sequence of 
n l  + nz flips? Order invariance secures the identity of solutions to 
the inverse-inference problem, regardless of how we choose to accept 
the total evidence a~ailable.~5 

I t  is interesting to note that traditional significance testing fails order in- 
variance. For example, the commonplace practice of significance testing for a 
multinomial distribution (of which the text's binomial distribution is a special 
case) by the use of a x2 test obeys the right-hand, but fails the left-hand equality 
of order invariance. 

For a simple case in point, the x2 test of the null hypothesis that the coin is 
"fair," based on ni flips of which hi land heads up, determines x2 (with one degree 
of freedom) by : 

X2 = 4(h; - (ni i2))2 + n; 

For the composite sequence of nl + n2 flips, ni - nl + nz and hi - hl + hl. How-
ever, the recommended policy for combining significance tests from independent 
trials is to use the rule that the sum of (independent) x2has a x2 distribution with 
the sum of the degrees of freedom of the independent tests. [See, for instance, 
Fisher, Statistical Methods for Research Workers (New York: Hafner, 13th ed., 
1973).] If, for instance, the two runs (nl and n2) are of equal length, with 40% 
heads in the first string and 60% heads in the second, then xz - 0 for the combined 
nl + n2 sequence (with one degree of freedom) ;yet each x9 (hence, also the sum 
which is xzwith two degrees of freedom) is positive. 

An alternative analysis for this failure of order invariance is that the rule for 
combining independent significance tests relies only on the x2 values of the separate 
tests. I t  is easy enough to show that, within a binomial model, the x2 value of a 
test is not sufficient for the original data used in the test. 
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Reconsider, for the final time, the problem of the hollow cube. For 
simplicity, we assume only a single weighing of the liquid, with the 
observation WL. Imagine, also, that  we have a t  our disposal a dif- 
ferent experiment in which we cut a rigid rod of known density, say 
one unit weight/unit length, to  the length of an edge of the cube. 
As with the liquid, we may weigh the segment of rod on our scale 
and observe the weight WE. Now we have an inverse-inference prob- 
lem about V which involves data  of two lcinds (see the discussion 
of the second variety of inverse inference, page 720).2G But there is a 
pivotal variable connecting the parameter of interest V to each 
datum. (WL- wL) is a pivotal variable that  can serve for inverse 
inference about V (since IVL = V, where WL is the true weight of the 
liquid), if WL is measured. Also, (WE - WR) is a pivotal variable that  
can serve for inverse inference about V (since WR = where WR $7, 
is the true weight of the rod), if WE is measured. Most importantly, 
each pivotal satisfies the special irrelevance principle, with respect 
to its counterpart datum. 

Let us rehearse the different solutions to the inverse-inference 
problem which follow by conditionalization and by Hacking's 
fiducia.1 inference. First, observe WL and solve the fiducial inference 
about V using the pivotal variable (WL- WL). The  result is a 
fiducial probability for values of V, which is precisely described as 
a normal probability distribution with mean WL and variance u2. 
The second datum, W R ,  can be combined with this credal probability 
by conditionalization (as described on page 721). An alternative 
solution begins with the fiducial inference about V using the other 
pivotal variable (WR- WE) and observation WE. The result is a 
fiducial probability for values of $Txvhich is precisely described as a 
normal probability distribution with mean ZUR and variance u2. 
Again, the other datum, zl~,can be combined with this credal 
probability by conditionalization. Unfortunately, the results are 
not the same for the two procedures! 

We can trace the failure of order invariance (and thus of condi- 
tionalization too) by examining the bayesian models that support 
the fiducial inferences. With pivotal variables, like these, which 
have normal distributions, the bayesian argument that duplicates 
the fiducial inference is one whose prior probability for the param- 
eter appearing in the pivotal is a utz$onn prior probability. Thus, 
the fiducial inference about WL [using pivotal (WL - wL)] can be 
modeled by a bayesian argument where the initial credal probability 

26 The data (WL,w ~ )do not admit of a single sufficient statistic, hence the 
description as data of two kinds. 
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for values of WL is a flat, uniform distributio~~. Similarly, the 
fiducial inference about WE [using pivotal ( W R  - WR)] can be 
modeled by a bayesian argument where the initial credal probability 
for values of WR is a flat, uniform d i s t r i b u t i ~ n . ~ ~  

Uniform distributions are commonly used in bayesian theory to 
represent ignorance.The oft-cited Laplacean principle of Insufficient 
Reason can be relied upon to generate uniform "ignorance" distribu- 
tions. However, it is common knowledge that indiscriminate use of 
Insufficient Reason quickly leads to contradictions. For example, 
with an unknown whose possible values form a continuum, repre- 
sentation of those values by a parameter 4 leads to a uniform dis- 
tribution of + values under Insufficient Reason. But transform the 
parameterization to +3 and the resulting uniform distribution for 
values is inconsistent with the uniform distribution for 4 values. 

Hacking is fully aware that his fiducial argument has bayesian 
models that require uniform "ignorance" probabilities. He finds 
this result acceptable and argues that it provides a satisfactory 
formulation of Insufficient Reason, satisfactory because (allegedly) 
the theory is consistent." He is not alone among those who would 
try to find a viable construal of Laplace's intuitively pleasing 
dictum,29 However, the failure of order invariance is tied to the 
consistency of Insufficient Reason. A uniform distribution for values 
of the weight of the liquid, WL, is equivalent to a uniform distribu- 
tion for values of the volume V of the cube. A uniform distribution 
for values of the weight of the rod, WE, is equivalent to a uniform 
distribution for values of the length of an edge of the cube, which is 

'7 See D. V. Lindley, "Fiducial Distributions and Bayes' Theorem," Journal of 
the Royal Statistical Society, B, xx (1958) :102-107. 

28 Hacking's error arises from an apparent misunderstanding of Lindley's 
central theorem (Lindley, op. cit.). Lindley's result is limited to data all of one 
kind! See, Hacking, op. cit., pp. 146-155. 

Levi has shown (in an unpublished manuscript) that Hacking's principle of 
irrelevance (as needed for fiducial inference) follows from his law of likelihood. 
Hence the law of likelihood is inconsistent with direct inference and conditional- 
ization. Since the more familiar likelihood principle [see A. Birnbaum, "Concepts 
of Statistical Evidence," in S. Morgenbesser, P. Suppes, and M. White, eds., 
Philosophy, Science, and Method (New York: St. Martin's, 1969)l both entails 
order invariance and follows from conditionalization, we see that Hacking's 
law of likelihood is inconsistent with direct inference and the likelihood principle. 

Finally, Hacking's remarks about "initial" support are somewhat unclear. He 
points out, correctly, that unbounded uniform "ignorance" distributions are 
improper. However, he concludes (and here I disagree) that, therefore, they are 
not suitable as initial measures of inductive belief. He also suggests that, as a 
formal postulate, "ignorance" distributions are validated when his irrelevance 
principle leads to identical results. I interpret Hacking to mean that "ignorance" 
distributions are justifiable only when fiducial inference is possible. 

29 See, for instance, Rosenkrantz, op ,  cit. 
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equivalent to a uniform distribution for values of the cube root of 
the volume V. One inference procedure assumes ignorance modeled 
by a uniform distribution for values of V, and the other inference 
procedure assumes ignorance modeled by a uniform distribution for 
values of $7. 

The violation of order invariance (hence of conditionalization) 
within Hacking's exceptionally lucid reconstruction points to the 
basic flaw that pervades the frequentist strategy for reducing in- 
verse to direct inference. If conditionalization is to be valid once 
credal probabilities are well defined (and how else is the theory to 
provide answers to the varieties of problems discussed in the pre- 
vious section?), then a precise solution to inverse inference will be 
modeled by some precise "ignorance" probability. But just which 
prior probability is chosen to model ignorance will depend upon the 
kind of evidence to be acquired. No one "ignorance" probability 
will serve to model the reduction of inverse to direct inference for 
all the kinds of data that might be accepted. Thus the parallel be- 
tween the choice of a privileged parameterization for applying 
Insufficient Reason and the choice of a privileged random variable 
for direct inference is both clear and instructive. Just as frequentists 
are prepared to reject the bayesian solution to inverse inference 
because the assumption of a precise prior probability is found to be 
untenable, so too they should not expect a reduction of inverse to 
direct inference because the assumption of a special variable to 
support the direct inference is incompatible with even a weakened 
commitment to conditionalization. 

TEDDY SEIDENFELD 

University of Pittsburgh 

Appendix 1 

A demonstration that conditionalization entails sufficiency. 

Assumptions and notation: Let K be a consistent, deductively closed set 
of sentences that represent a body of knowledge. Let Q K (  ) be a coherent 
probability function, based on the corpus K. Let Ki be the corpus that  
results from K after data i are accepted. Let d be the new evidence 
available, and let t (f(d) = t) be some simplification of this evidence. 

With respect to hypotheses He about some unknown 0, 
To show: if & ~ ( d )> 0, then Q,,(Ho) = QK,(He) whenever t is sufficient 

for d with respect to 9. 
Proof: If QK(d) > 0 then QK(t) > 0. By conditionalization, 
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and 
Q, (HB)= QK (d/He) QK (He)+ QK (d) (*I 

and, since t is a simplification (function) of d, 

Substituting (**) into (*), 

Qm(Ho) = QK (d b t/He). QK (Ha) + QK (d 6" t) 

and,  by  the multiplication axiom, 

and, by conditionalization, 

T ~ U S ,Q,(Hs) = QKt(Hs) just in case Q ~ ( d / t  Ha) = Q ~ ( d / t ) .  

Appendix 2 

I n  this appendix we examine, in some detail, the epistemological-proba- 
bility solution t o  the problem discussed in section I of the paper. Following 
conventional notation, let N(p, u2) stand for the normal distribution 
with mean p and variance u2. I n  the example considered, the sequence 
(wl, . . ., w,) form a da ta  set of n (n moderately large and odd) mutually 
independent readings from a N(V,  1) distribution. We investigate two 
statistics (reductions) of the da ta :  t o  (sample average) and m (sample 
median). 

T h e  relevant distributions for the  sample statistics a re :  

(i) a has a N(V, l /n)  distribution. 
(ii) m has, approximately, a N(V,  n/2n) distribution. 

(iii) is sufficient; so the conditional distribution of m, given a,is 
approximately N ( a ,  .57/n). 

From the  distribution of a ,  i t  follows t h a t  the percentage of n-fold 
samples with a within d j 3  units of V, i.e., the  percentage of n-fold 
samples satisfying RRdfi(a),  is just the percentage of a normal dis- 
tribution within d j  standard deviations of the mean. T h a t  is, approxi- 
mately 95% of all n-fold samples satisfy RR2/dZ(a) .  

Similarly, R R  applies to  sample medians; so t h a t  the percentage of 
n-fold samples with a median within ( d ~ / 2 )  (.\I3>) units of Ti, i.e., the  
percentage of n-fold samples satisfying RR4-(m), is just the  percentage 
of a normal distribution within d j standard deviations of the  mean. T h a t  
is, approximately 95y0 of all n-fold samples satisfy RR(,qj,(,/d;;,(m). 

T h e  distributions t h a t  would follow for V, if both R R ( a )  and RR(m)  
support appropriate randomness claims, a re  precise and  mutually in- 
consistent. Hence, unless trivial epistemological probability statements 
about  V are t o  result fro111 the d a t a  ( a ,  m), one of the randomness claims 
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[randomness of either RR(m)  or R R ( 8 ) I  must be defeated. Moreover, if 
the  sufficiency principle is t o  hold, then only the randomness claim regard- 
ing R R ( 8 )  is valid. 

Thus, t o  show t h a t  sufficiency fails in epistemological probability 
theory i t  is enough t o  demonstrate t h a t  either t h a t  

(a) knowledge of a does not defeat the purported randomness 
claim: the  n-fold sample is a random member of all n-fold samples with 
respect t o  RR(m)-relying on frequencies generated by (ii) (above) ; 
or t h a t  

(b) knowledge of m defeats the  purported randomness claim: the  
72-fold sample is a random member of all n-fold samples with respect t o  
RR(@)-relying on frequencies generated by  (i) (above). 

Kyburg's regulations for determining valid randomness claims are  
extremely complicated. There are  several prevention and counterpreven- 
tion clauses t o  each basic strategy for showing (or defeating) a randomness 
claim. A t  the time of this writing (and follo~ving much correspondence 
with Kyburg on the  point) i t  appcars t h a t  (b) is true. FIowever, t o  clinch 
the matter,  let me show how (a) holds as  well. 

Suppose the  evidence consists of the reported m value only. 'Then, 
since 8 is unknown, there is no challenge t o  the randomness claim of (a) 
(above). If a becomes known, does i t  defeat this randomness claim? 
Because 8 (and not  a)is sufficient for I.', by the  sufficiency principle zlr 
is relevant t o  inference about  V if only m is known. But  Icyburg's 
randomness rules d o  not agree with this result of sufficiency. 

T h e  conditional distribution of m, for known a, is found in (iii) (above). 
If we consider the  reference set  of all n-fold samples with a fixed sample 
mean (fixed a t  8 )  then the distribution of m values will be N ( 8 ,  .57/n), 
approximately. T h a t  is, in this conditional reference set the  m values 
tend to be distributed about  8 ,  with a distribution independent of V 
(since 0 is sufficient for V). The  randomness regulations for testing the 
effect of this conditional distribution on the claims in (a) are found in 
Kyburg's randomness principles I and I1 (p. 227 of his book), which can 
be summarized as :  narrower reference sets get priority over competing 
frequency distributions, unless the narrower set also carries a broader 
(containing) interval of frequencies than the  intervals associated with 
the wider reference set. 

When @ is close to V, the conditional reference set has frequencies for 
RR(m) which exceed the corresponding frequencies for RR(m)  uncondi- 
tionally. When 20 is far from V ,  the conditional reference set has fre- 
quencies for RR(m)  which fall far below the corresponding frequencies 
for RR(m) unconditionally. Thus,  in the narrower reference set, obtained 
by fixing the sample average, the  distribution for RR(m)  ranges from 
frequencies below, t o  frequencies above the  frequencies in  the  uncondi- 
tioned reference set of all n-fold samples. Hence, by  randomness condi- 
tions I and 11, 8 does not prevent the randomness clainl in (1)-contrary 
to  the dictates of sufficiency. 
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Appendix 3 

A demonstration that conditionalization entails order invariance. 

Assume : QK ( d l  S-* d z )  > 0. 
T o  show : QK,,,(~) = Q K , ~ ( ~ )= QK,, ( h ) .  
Proof: 

If Q K  ( d l  & d z )  > 0, then Q ~ ( d i )> 0 (i = 1, 2) 
since 

Q K  ( d l  @ d ~ )I Q K  ( d i )  (i = I,2) 
B y  conditionalization, 

and,  by the  multiplication axiom, 

= Q K  ( d l / &  & h )  ' Q K  ( d z / h )  Q K  ( h )  + [QK ( d i / d z )  .Q K  ( & ) I  (*) 
and 

= Q K  ( & / d l  6'h )  .Q K  ( d i / h )  .Q K  ( h )  + [QK ( & / d l )  .QK ( d l ) ]  ( t )  

T h a t  is, (*) = ( t ) .  
By conditionalization, 

(*) = Q K , ( d l / h )  .QKa( h )  + Q ~ , ( d l )  (**I 
and 

( t )  = Q ~ , ( d z / h ).QK,  (h) + QK,  ( d z )  ( t t )  

Finally, by conditionalization, 

(**I = Q K Z l ( h )  and ( t t )  = Q K , ~ ( ~ )  

COMMENTS AND CRITICISM 

CONFIRMATIONAL CONDITIONALIZATION 

ENRY KYBURG and I agree that direct inference plays 
an important role in scientific inquiry and practical de- 
liberation. We disagree as to whether knowledge of chances 

is indispensable as an ingredient of such inference or whether, as 
Kyburg insists," such knowledge may be replaced by knowledge af 
relative frequencies. 

In  "Direct Inference,"? I demonstrated that Kyburg's account of 

* "Randomness and the Right Reference Class," this JOURNAL, LXXIV, 9 (Sep- 
tember 1977): 501-521, hereafter RRRC; parenthetical page references to 
Kyburg are to this paper. 

tUDirect Inference," ibid., LXXIV,1 (January 1977): 5-29, hereafter DI; paren- 
thetical page references to my work are to this paper. 
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